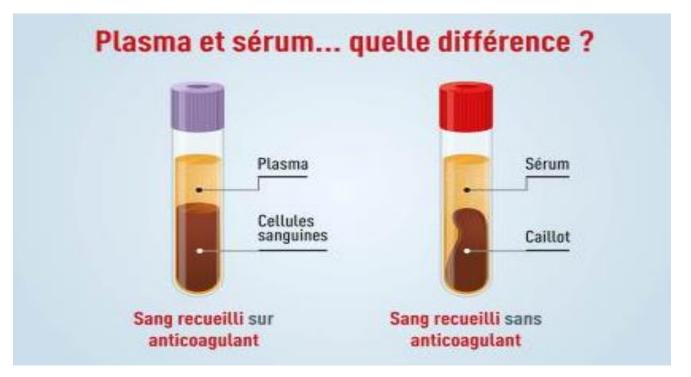


Dr Isabelle VINCENT Anatomie/Physiologie IFSI 1^{ère} année 10 décembre 2019

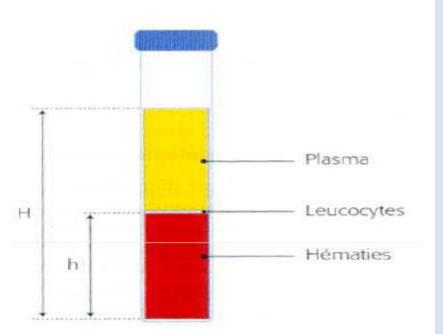
Plan

- 1. Présentation du sang
- 2. Composition du sang
 - 1. Le plasma
 - 2. Les cellules sanguines
 - 1. Les globules rouges ou hématies ou érythrocytes
 - 2. Les globules blancs ou leucocytes (5 catégories)
 - 3. Les plaquettes ou thrombocytes
- 3. Formation des cellules sanguines = hématopoïèse


1-Présentation du sang

Présentation du sang : sang total

- 4 à 5L chez l'adulte
- Une partie liquide = le plasma
 55%
- Une **partie solide** = les cellules sanguines 45%



Présentation du sang

Sérum= plasma sans les protéines de la coagulation

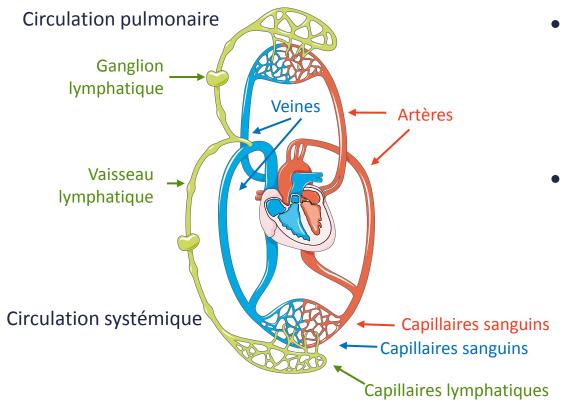
Présentation du sang : hématocrite

Hématocrite =

volume occupé par les cellules

(hématies) rapporté au volume total

Ht = h/H (en %)


Hématocrite normal

Femme et enfant : 37 à 47 %

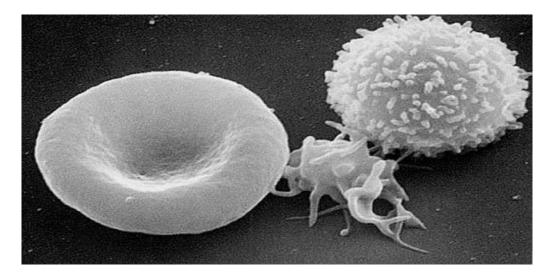
Homme: 40 à 50 %

Varie en fonction du sexe, de l'altitude, des maladies

Circulation sanguine et lymphatique

Sang

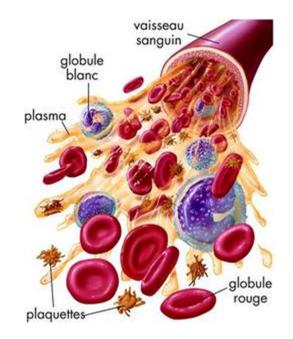
- liquide rouge
- plasma + cellules sanguines


Lymphe

- liquide jaune clair
- composition proche du plasma
- nombreux lymphocytes

Les cellules sanguines

globule rouge


globule blanc

plaquette

– Cellules sanguines :

- 99% érythrocytes
- 1% leucocytes et plaquettes

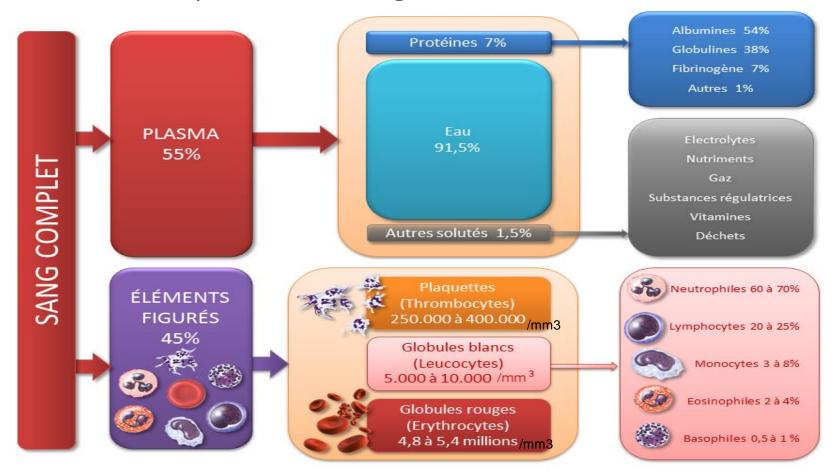
Microscopie électronique

Les fonctions du sang

Transport dans le corps

- De l'oxygène (O²) et du dioxyde de carbone (CO²)
- Des molécules d'aliments
- (glucose, lipides, acides aminés)
- Des ions (Na⁺, Ca²⁺, HCO₃⁻)
- Des déchets (ex : urée)
- Des hormones
- De la chaleur

Défense de l'organisme


- Contre les organismes
 étrangers et autres agressions
- Mécanisme d'hémostase et de coagulation

Homéostasie = capacité de l'organisme à maintenir son milieu en équilibre

2-Composition du sang

Composition du sang chez un adulte normal

Les protéines plasmatiques

- Albumine (principale)
- Immunoglobulines
 - dont anticorps de groupes sanguins
- Facteurs de coagulation
- Fibrinogène
- 4 rôles principaux assurés par les protéines plasmatiques
 - Rôle de transporteur
 - 2. Pression oncotique
 - 3. Immunité humorale
 - 4. Coagulation (facteurs de coagulation et fibrinogène)

Hémogramme = NFS

HEMOGRAMME (Beckman Coulter LH780) (sur sang total EDTA)

Numération globulaire

HEMATIES
Hémoglobine
Hématocrite
VGM
TCMH
CCMH
LEUCOCYTES

Formule leucocytaire

Polynucléaires neutrophiles
Polynucléaires éosinophiles
Polynucléaires basophiles
Lymphocytes
Monocytes

PLAQUETTES

(Technique Beckman Coulter LH 780)

4.64	Millions/mm3	(4.50 à 6.50)
14.6	g/dL	(13.0 à 17.0)
40.7	%	(40.0 à 54.0)
87.8	fL	(80.0 à 100.0)
31.4	pg	(27.0 à 32.0)
35.7	g/dL	(32.0 à 36.0)
4.4	Mille/mm3	(4 0 à 10 0)

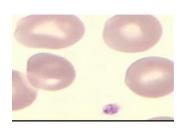
32.3	%	soit	2 30 1 /mm3	(1 /00 a / 500)
2.4	%	soit	106 /mm3	(<à 600)
0.6	%	soit	26 /mm3	(<à 200)
34.5	%	soit	1 518 /mm3	(1 200 à 4 500)

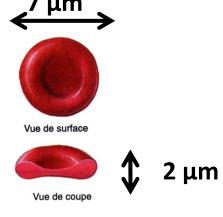
		0011			(
10.2	%	soit	449	/mm3	(< à 1	000)	

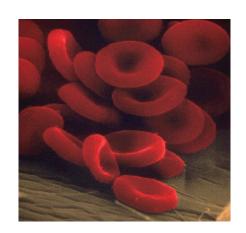
196	Mille/mm3
	TATALON STREET

Hémogramme

- constantes érythrocytaires
 - VGM : Volume Globulaire Moyen = Ht/ Nbre de GR
 - TCMH: Teneur Corpusculaire Moyenne en Hb = Hb/Nbre de GR
 - CCMH: Concentration Corpusculaire Moyenne en Hb = Hb/Ht


Intervalles de référence

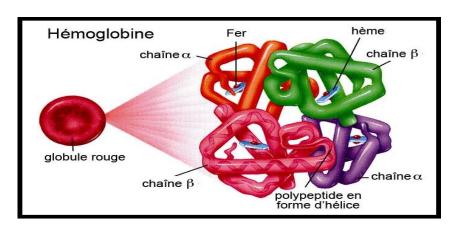

	Unités	Femme	Homme
NUM+FORM+PLAQ			
Numeration globulaire(Leucocytes)	G/L	3.8-11.0	4.00-10.00
Numeration globulaire(Hématies)	T/L	3.8-5.9	4.50-5.80
Numeration globulaire(Hémoglobine)	g/dL	11.5-17.5	13.5-17.5
Numeration globulaire(Hématocrite)	%	34-53	40-50
Numeration globulaire(VGM)	fL	76-96	82-98
Numeration globulaire(TCMH)	pg	24.4-34	>=27
Numeration globulaire(CCMH)	g/dL	31-36	32-36
PLAQUETTES	G/L	150-445	150-400
Formule sanguine(PN neutrophiles)	%		
Formule sanguine(soit)	G/L	1.4-7.7	1.5-7.5
Formule sanguine(PN éosinophiles)	%		
Formule sanguine(soit)	G/L	0.02-0.58	0-0.8
Formule sanguine(PN basophiles)	%		
Formule sanguine(soit)	G/L	0.0-0.11	0-0.2
Formule sanguine(Lymphocytes)	%		
Formule sanguine(soit)	G/L	1.0-4.8	1.00-4.50
Formule sanguine(Monocytes)	%		
Formule sanguine(soit)	G/L	0.15-1.0	0.20-1.00
Numeration globulaire(IDR)		37-50	37-50


Les hématies ou érythrocytes

Cellule	Description	Nombre/L de sang	Durée de développement (D) Durée de vie (V)	Fonction
Érythrocytes	Disque biconcave Pas de noyau	4 à 6 x 10 ¹²	D:5 à 10 jours V:100 à 120 jours	Transport des gaz respiratoires (O ₂ et CO ₂)

99 % des cellules sanguines

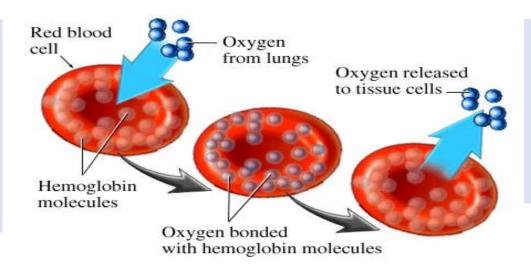
Les hématies ou érythrocytes


- Pas de noyau
- 2 propriétés fondamentales
 - Déformabilité de la membrane :
 - diamètre 7 μm > diamètre des plus petits capillaires sanguins
 - Fonction oxyphorique : supportée par l'hémoglobine
 - Pigment rouge
 - Transporteur de l'O²
 - 280 millions de molécules d'Hb/GR
- Portent les antigènes de groupes sanguins

L'hémoglobine

- 33% du poids du globule rouge
- Pigment respiratoire

 Substance protidique ayant la faculté de fixer ou de céder de l'oxygène



Composée de :

- partie protéique : les chaînes de globines α et β
- une molécule de protoporphyrine : l'hème
- Au centre de l'hème : un atome de fer

L'hémoglobine

L'O² se fixe sur le fer de la molécule d'hème au niveau des poumons et est transporté aux tissus par le réseau artériel

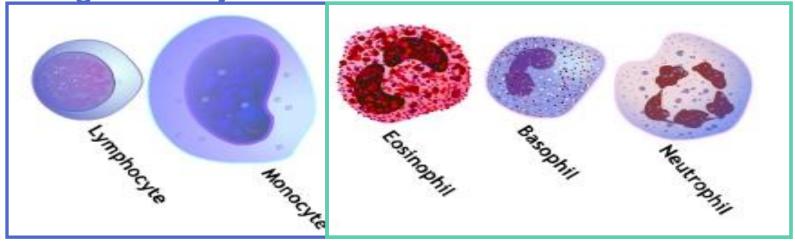
Le CO² est ramené aux poumons par le réseau veineux pour être expulsé

Les leucocytes

- Assurent
 - l'immunité cellulaire
 - l'immunité humorale = production d'anticorps

défense de l'organisme contre les agents étrangers :

virus, bactéries, parasites, cellules cancéreuses


Les leucocytes

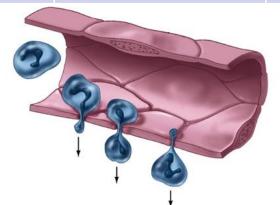
- Norme 4 à 10.10⁹/L
- $> 10.10^9/L = leucocytose$
 - Physiologique : post-prandial, exercice physique, tabac...
 - Pathologique : inflammation, infection, hémopathie
- < 4.10⁹/L = leucopénie
 - Médicaments (chimio, immunosuppresseurs...)
 - envahissement médullaire,
 - déficit immunitaire congénital...

Les leucocytes

Agranulocytes Granulocytes ou polynucléaires

Noyau monolobé

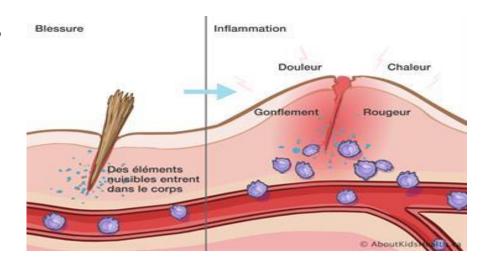
Noyau polylobé

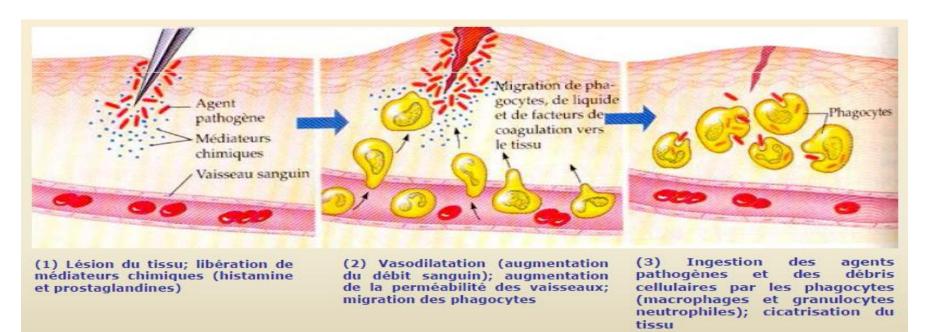

Chaque type de leucocyte a une fonction spécifique

Les granulocytes ou polynucléaires

Cellule	Description	Nombre/L de sang	Durée de développement (D) Durée de vie (V)	Fonction
Neutrophile	Noyau plurilobé Granulations cytoplasmiques 10 à 14 µm de diamètre	3 à 7 x 10 ⁹	D:6à9jours V:6hàqquesjours	Phagocytose des bactéries et divers débris
Eosinophile	Noyau bilobé Granulations cytoplasmiques 10 à 12 μm de diamètre	0,1 à 0,4 x 10 ⁹	D:6à9jours V8à12jours	Destruction des parasites et des complexes Ag-Ac libres Inactivation des allergènes Réaction allergique
Basophile	Noyau lobé Grosses granulations cytoplasmiques bleues 5 à 17 μm de diamètre	0,02 à 0,05 x 10 ⁹	D: 3 à 7 jours V: (?) qques heures à qques jours	Libération histamine et médiateurs associés à la réaction inflammatoire et allergique Hypersensibilité retardée

Les monocytes --- macrophages


Cellule	Description	Nombre/L de sang	Durée de développement (D) Durée de vie (V)	Fonction
Monocyte	Noyau en forme de U ou de haricot Cytoplasme gris-bleu 14 à 24 µm de diamètre	0,1 à 0,7 x 10 ⁹	D: 2 à 3 jours V: plusieurs mois	Transformation en macrophages dans les tissus Phagocytose des virus, bactéries et cellules mortes de l'organisme


Sort du sang par diapédèse pour devenir un macrophage dans les tissus

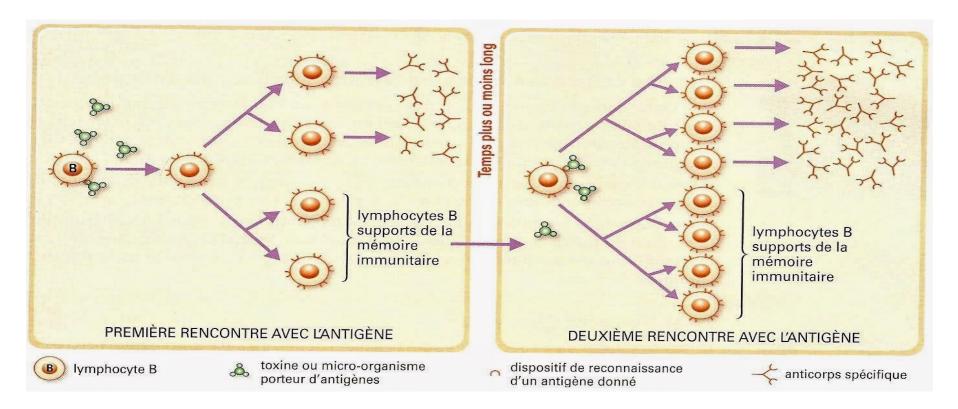
Les macrophages

- Avec les polynucléaires neutrophiles
 - = cellules phagocytaires
- Interviennent dans :
 - Processus inflammatoire
 - Lutte contre les infections

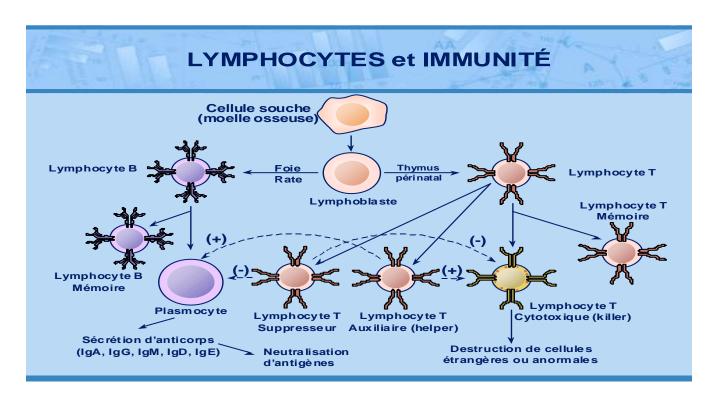
Réaction inflammatoire et phagocytose

Les lymphocytes

Cellule	Description	Nombre/L de sang	Durée de développement (D) Durée de vie (V)	Fonction
	Noyau spérique Cytoplasme bleu pâle 5 à 17 µm de diamètre	1,5 à 3 x 10 ⁹	D : qques jours à qques semaines V : qques heures à qques années	Défense de l'organisme par attaque directe de cellules ou par l'intermédaire d'anticorps


Les lymphocytes

- 2 types :
 - lymphocytes B
 - lymphocytes T
- Fontion : défense de l'organisme
 - Par l'intermédiaire d'anticorps = immunoglobulines spécifiques d'un antigène : immunité humorale
 - Par attaque directe de cellules : immunité cellulaire
- Mémoire immunitaire : propriété utilisée en vaccination



Les lymphocytes: mémoire immunitaire

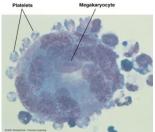
Les lymphocytes

Lymphocytes B

Immunité humorale

Activation et transformation en plasmocyte

Fabrication des anticorps


Lymphocyte T

Immunité cellulaire

Destruction des cellules infectées ou anormales


Les plaquettes ou thrombocytes

Cellule	Description	Nombre/L de sang	Durée de développem ent (D) Durée de vie (V)	Fonction
Plaquettes	Fragments du cytoplasme des mégacaryocytes Forme discoïde Absence de noyau 1 à 3 µm de diamètre	250 à 500 x 10 ⁹	D: 4 à 5 jours V: 5 à 10 jours	Réparation des petites déchirures des vaisseaux sanguins Elément essentiel de l'hémostase primaire = formation du clou plaquettaire Intrication avec le processus de coagulation

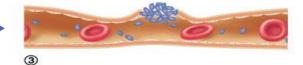
Hémostase

Brèche vasculaire Épanchement sanguin

3 étapes principales

1. Spasme vasculaire

Vasoconstriction



Formation du caillot de fibrine

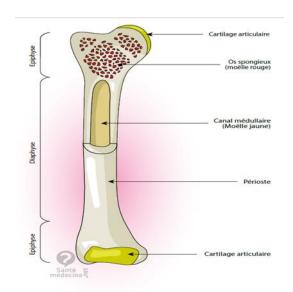
Hémostase et coagulation

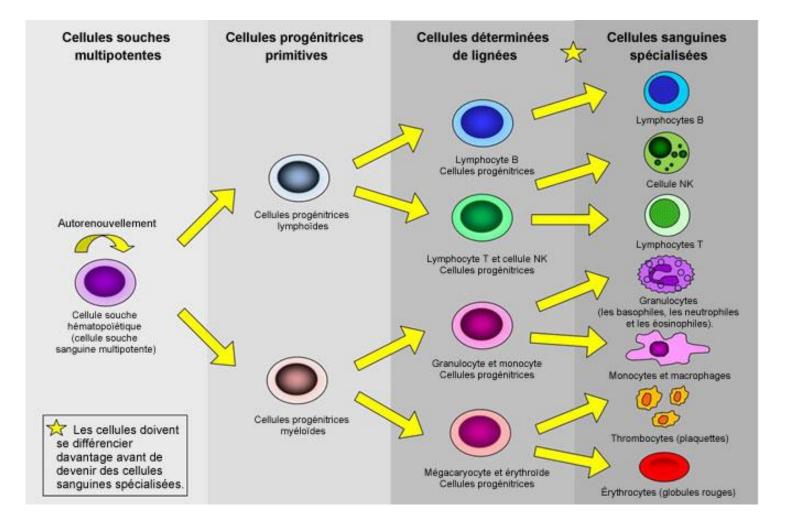
Clou plaquettaire

FIGURE 18.14
Micrographie au microscope électronique à balayage
d'érythrocytes emprisonnés dans un réseau de fibrine.
L'objet gris plus ou moins sphérique apparaissant au haut du cliché
est une plaquette (15 000 ×).

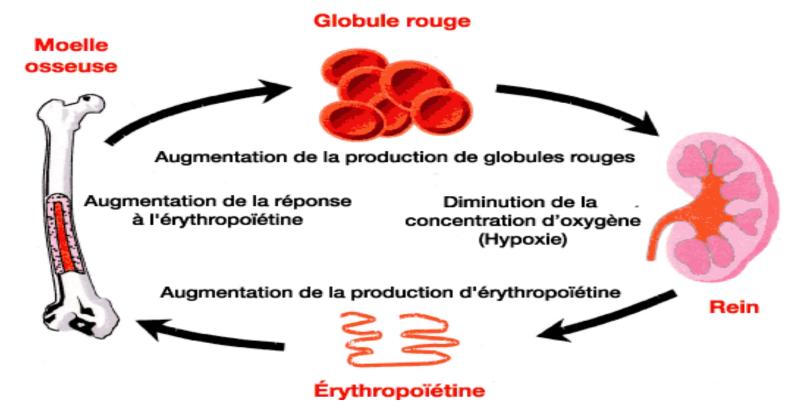
3-Formation des cellules sanguines

Hématopoïèse


- Cellules sanguines
 - durée de vie variable selon le type cellulaire
 - 1 journée à plusieurs mois
 - renouvellement quotidien hautement contrôlé afin de maintenir une concentration sanguine normale
- Hématopoïèse : ensemble des mécanismes qui assurent le remplacement continu et régulé des différentes cellules sanguines


Hématopoïèse

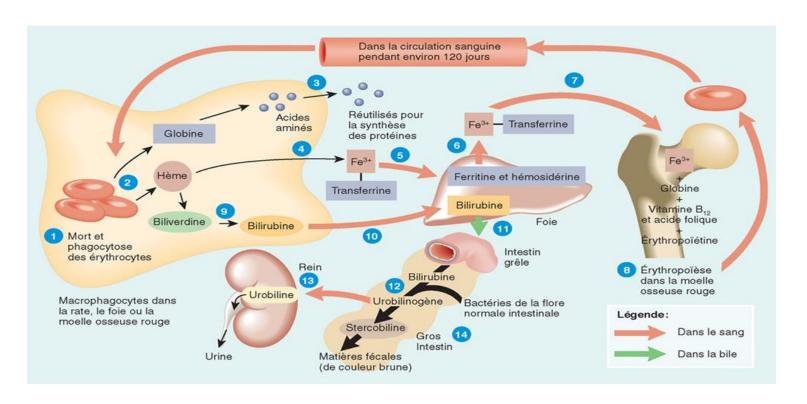
- Les cellules sanguines proviennent d'un seul type de cellule = cellule souche hématopoïétique
- Dans les organes hématopoïétiques
 - Fœtus : sac vitallin puis foie, rate et moelle osseuse
 - Adulte : uniquement moelle osseuse
 - Os plats et os longs (ex : sternum, fémur....)


Régulation

- Par le besoin d'accroître le type correspondant de cellule
- Par des cytokines et hormones (ex : erythropoïétine)

Erythropoïèse

Erythropoïèse


Fer

- Cycle du fer = circuit fermé : récupération du fer de l'HB des GR sénescents
- Absorption digestive très faible
- Carence en fer : anémie microcytaire

Vitamine B12 et acide folique

- Carence : anémie macrocytaire + mégaloblastose médullaire
- Alcoolisme et la maladie de Biermer

Cycle de vie d'un érythrocyte

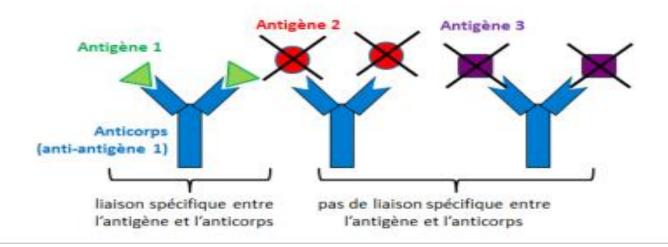
Les systèmes de groupes sanguins

Dr Isabelle VINCENT Anatomie/Physiologie IFSI 1^{ère} année 10 décembre 2019

Définition antigène (Ag) et anticorps (Ac)

Antigènes

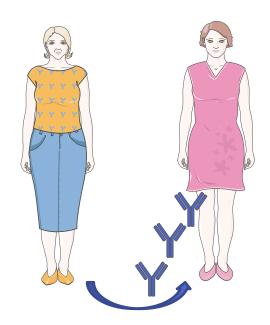
 structures spécifiques situé sur la membrane des cellules et capables de provoquer la formation d'Ac (ou immunoglobulines) contenues dans le plasma


Anticorps

- sont produits par les lymphocytes B et les plasmocytes, après introduction dans l'organisme d'un Ag que celui-ci ne possède pas
- le système immunitaire reconnait l'Ag comme étranger et répond en produisant un Ac spécifique
- La liaison sur la surface d'une cellule d'un Ag et de son AC spécifique entraîne la destruction de la cellule

Définition antigène (Ag) et anticorps (Ac)

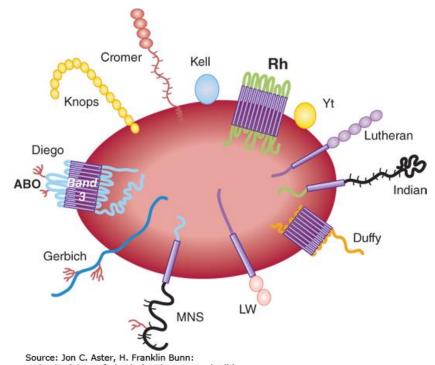
Anticorps : une reconnaissance spécifique de l'antigène


Réaction immunitaire

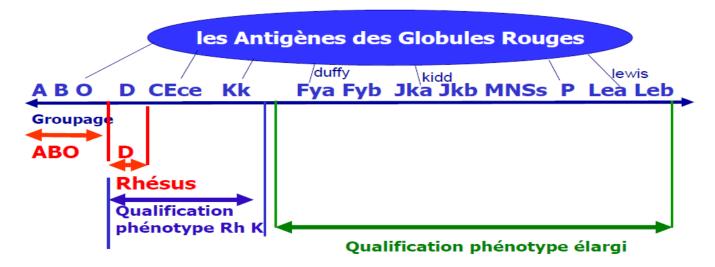
Immunogénicité

- capacité d'un Ag à induire la fabrication d'anticorps dirigés contre lui
- plus un Ag est immunogène, plus le risque d'apparition d'anticorps est élevé

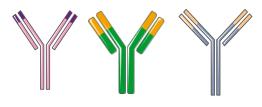
Allo-immunisation


 formation d'un anticorps par l'individu d'une espèce contre un antigène d'un individu de la même espèce

Allo anticorps dirigés contre le non soi


Antigènes de groupe sanguin

- Quand la cellule est un globule rouge, les antigènes situés sur la membranes définissent un groupe sanguin
- Variable selon les individus
- Transmission génétique
- Actuellement : > 30 systèmes décrits
 - Système ABO (Karl Lansteiner en 1900)
 - Autres: RH, Kell, Duffy....

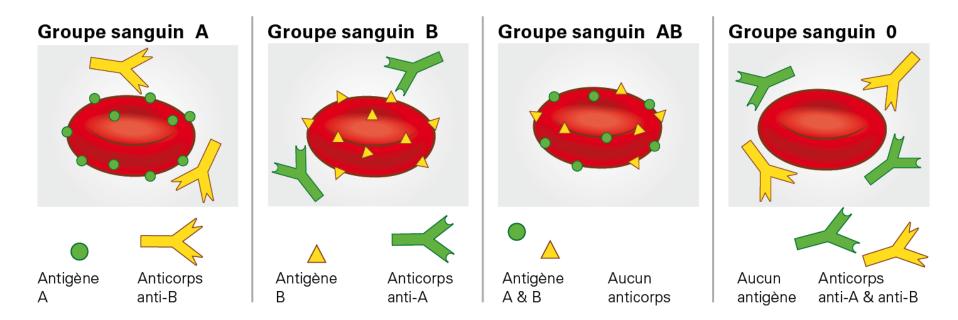

Source: Jon C. Aster, H. Franklin Bunn: Pathophysiology of Blood Disorders, Second Edition www.hemonc.mhmedical.com Copyright © McGraw-Hill Education. All rights reserved.

Détermination du groupe sanguin

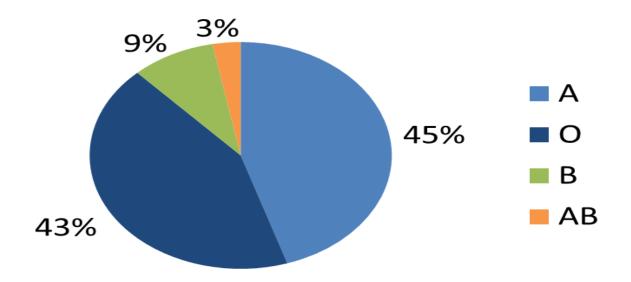
- Groupe standard (ABO + D)
- Phénotype RH-KELL
- Phénotype étendu : autres systèmes de groupe, (non réalisés systématiquement)

Anticorps de groupes sanguins

	Ac naturels réguliers	Ac immuns irréguliers
Stimulation antigénique	Non	Oui après transfusion ou grossesse ou greffe
Présence obligatoire	Oui chez tous les individus	Non présents de façon irrégulière
Mise en évidence	Épreuve plasmatique de la détermination de groupe	Recherche d'anticorps irréguliers (RAI)
Exemples	AC du système ABO	Anti-D chez une femme enceinte Rhésus D négatif


Loi de Landsteiner pour le système ABO

 Présence constante des anticorps correspondant aux antigènes absents des globules rouges


- = AC naturels réguliers
- circulent dans le plasma
- posent problème dès la première transfusion incompatible : accident hémolytique intra-vasculaire par incompatibilité ABO

Ag et Ac de groupe sanguin ABO

Présence constante des anticorps correspondant aux antigènes absents des globules rouges

Système ABO

Système Rhésus

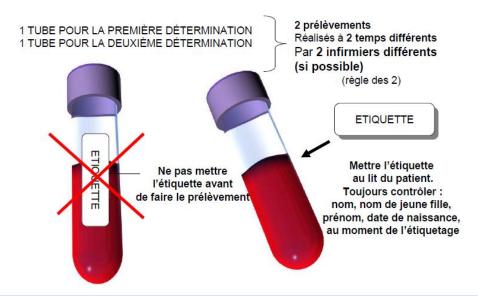
• 5 antigènes

```
• Plusieurs écritures D + C + E - c + e+ Rh1+ Rh2+ Rh3- Rh4+ Rh5+
```

Antigène D

- Présence : Rhésus + (85% de la population française)
- Absence : Rhésus (15% de la population française)

L'antigène D est le plus immunogène


5 anticorps

= anticorps irréguliers immuns acquis par transfusion ou par grossesse

Les anticorps immuns de groupes sanguins

- Leur présence peut poser problème au cours
 - de la 2ème transfusion incompatible
 - ou 2ème grossesse
- Si incompatibilité :
 - hémolyse retardée
 - ictère
 - inefficacité transfusionnelle
 - maladie hémolytique fœto-maternelle
- Dépistés par recherche d'anticorps irréguliers (RAI) obligatoire
 - avant toute transfusion
 - dans le suivi de grossesse

Prélèvements pour groupage sanguin

Ne pas étiqueter les tubes à l'avance

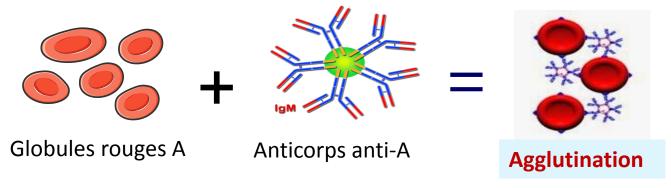
→ Les étiqueter immédiatement après le prélèvement et en présence du patient

Groupage ABO au laboratoire

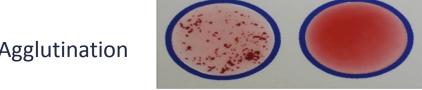
Epreuve globulaire (ou Beth-Vincent)

Recherche des Ag membranaires au moyen de sérums-tests +

Epreuve plasmatique (ou Simonin)


Recherche des Ac

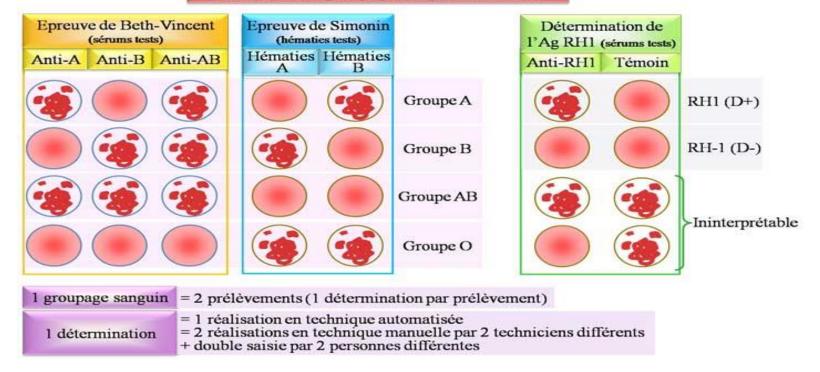
plasmatiques au moyen
d'hématies tests


Les 2 épreuves sont COMPLEMENTAIRES et OBLIGATOIRES

Groupage ABO au laboratoire

Quand l'antigène est un globule rouge, la réaction antigène-anticorps prend la forme d'une agglutination

A l'œil nu, en milieu liquide

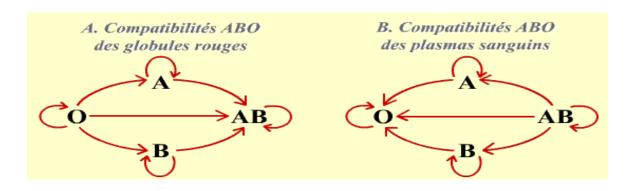


Pas d'agglutination

Agglutination

Groupage ABO au laboratoire

Réalisation du groupage sanguin ABO-RH1



Implications cliniques (1)

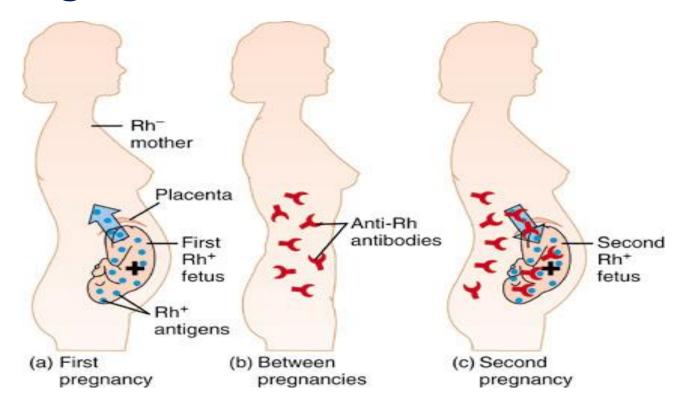
- Transfusionnelles
- Règles de compatibilité donneur-receveur
 - Compatibilité ABO impérative
 - Sang phénotypé RH KELL chez
 - Femmes en âge de procréer
 - Enfants
 - Polytransfusés
- Obligation d'examens pré-transfusionnels immuno-hématologiques
- Importance capitale du contrôle ultime prétransfusionnel

Compatibilité transfusionnelle ABO

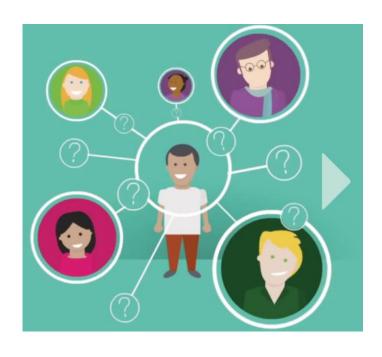
Eviter rencontre Ag et Ac correspondant

- Transfusion de de globules rouges : ne pas apporter à un receveur un Ag qu'il n'a pas
- Transfusion de plasma : ne pas apporter d'Ac correspondant à un Ag présent sur les globules du receveur

Implications cliniques (2)



Obstétricales


- Suivi des grossesses : groupage ABO RH KEL et RAI
- Prévention de l'immunisation foetomaternelle et de la maladie hémolytique du nouveau-né (MHNN) par immunoglobulines anti-D chez les femmes D négatif enceintes de fœtus D positif

Rhésus D et grossesse

Quand les mamans Rh – détruisent les globules rouges de leurs bébés Rh +

Implications cliniques (3)

- Greffes
- Compatibilité ABO à prendre en compte dans
 - Allogreffes de cellules souches hématopoïétiques
 - Greffes tissulaires

Merci de votre attention ivincent@ch-morlaix.fr